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bstract

lastic constant–porosity relation for polycrystalline thoria reported by previous researchers has been reanalyzed on the basis of the Mori–Tanaka
ean field approach and a power law dependence of moduli with porosity. It indicates that the shear modulus dependence on Young’s modulus
s possibly related to the sintering characteristics of the material rather than pore morphology. A new method has been suggested for predicting
ariations of elastic properties and porosity with the progress in sintering of thoria based on experimental data at a single porosity only. The
redicted values agree with the experimental data quite well.

2008 Published by Elsevier Ltd.
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1. Introduction

Ceramic materials are usually prepared by sintering green
powder compacts. This invariably leaves some amount of
porosity in the material. Thus ceramists studying the relation
between microstructure and macroscopic properties have always
been concerned with the effect of porosity on macroscopic
properties—in particular the effect of porosity on elastic proper-
ties. In an effort to develop the elastic moduli–porosity relations
for polycrystalline material, Spinner et al.1 made a detailed study
of porous polycrystalline thoria. One of the reasons for choosing
thoria for their study was that being a cubic crystal its thermal
expansion was isotropic and therefore, thermally induced inter-
granular stresses which might be present in other type of crystals
were not present. So it was expected that the porosity–elastic
moduli relationship developed based on the study of thoria
would come closer to the “ideal” situation. Spinner et al.1 pre-
pared three groups of samples designated as Groups I, II and
III. In Group I specimens, the particle size was in the range
0–2 �m and to prepare specimens of porosity greater than ≈8%,
–40% volume fraction of unsulfonated styrene-divinyl benzene
eads (250–325 mesh) were used as an artificial pore former. For
roup II specimens, particle size was 2–4 �m and 6–36% of the
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same pore former was used to prepare specimens above ≈12%
porosity. Group III specimens were prepared without any pore
former with particle size 4–44 �m. Each of the four specimens
in this group were prepared by using different powder sizes.
The porosity of first two groups varied between 3% and ≈40%
whereas for the third group it was in the range ≈17% and ≈26%.
The shear modulus and Young’s modulus of the sintered sam-
ples were measured by the dynamic resonance method and other
elastic constant values namely the bulk modulus and Poisson’s
ratio were calculated from these measured values by using well
known relations given by the theory of elasticity. They analyzed
their experimental data of elastic moduli in terms of an empirical
equation given by a second degree polynomial in porosity. For
both Young’s and shear moduli of Groups I and II specimens
the equation gave two sets of different curves showing larger
decrease in moduli with porosity for Group I specimens. The
data for Group III specimens gave satisfactory agreement with
the equations developed for Group II. Also the relative decrease
in Young’s modulus was greater than the relative decrease in
the shear modulus by a larger amount for Group I specimens
than for Groups II and III specimens. As a result Poisson’s ratio
for Group I showed greater decrease with porosity than that of
Groups II and III.
They also analyzed their experimental data on the basis of the-
oretical expressions given by various researchers2–6 and found
that the relative decrease in elastic moduli obtained experimen-
tally was greater than what theoretical equations predict. This
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ig. 1. Variation of the shear modulus of Groups I, II and III specimens with
oung’s modulus. The solid line corresponds to Eq. (11) with n0 = 0.412.

eviation was attributed to the non-sphericity of pores in the
pecimens. Since the decrease in moduli with porosity for Group
specimens was more than that of Group II or III specimens, it
as concluded that the pores of the specimens of Group I should
epart from being spherical to a greater degree than those of
roup II or III.
The Poisson’s ratio of Group I specimen having the highest

orosity of 33.40% was negative and Spinner et al.1 consid-
red this to be an erroneous data though it was in line with the
rend of variation of Poisson’s ratio with porosity for Group I
pecimens derived by them. It may be noted that the isotropic
lastic theory7 allows negative Poisson’s ratios, with limits of ν

iven by −1 < ν < 0.5 and for few cases of isotropic and homo-
eneous material negative Poisson’s ratio has been reported in
he literatures8–10. Dean11 has also analyzed the data for Groups
and II specimens using a variable aspect ratio self-consistent
blate spheroidal inclusion theory given by Wu12 and obtained
he “effective” aspect ratio of pores as 0.241 and 0.475 for
roups I and II, respectively. Though the theory explained the

lastic moduli variation with porosity quite well, it failed in case
f Poisson’s ratio. This was attributed to the overestimation of
he value of Poisson’s ratio by the theory for porosities above
0%.

Fig. 1 shows a plot of the shear modulus of these three groups
f data against their Young’s modulus. It apparently contradicts
ome of the observations regarding the effect pore morphology
n elastic moduli made by the previous researchers1,11 and indi-
ates that the variation of shear moduli with Young’s moduli of
ll the groups of data can possibly be described by a single equa-
ion (which is derived later) given by the solid line with ±5%
ccuracy even though they have different starting powder sizes
nd pore morphologies.

In this paper we present an analysis of the data from a dif-

erent view point. First we derive a relation between the shear
nd Young’s modulus using self-consistent theory based on the
ori–Tanaka mean field approach13 to explain the variation of

he shear modulus with Young’s modulus and then present a new
pean Ceramic Society 29 (2009) 385–390

method of predicting the variation of elastic moduli with poros-
ity using the experimentally measured data at a single point
corresponding to the highest porosity in each group. We also
attempt to address the issue whether it is the porosity or some
other parameter which explains the observed behaviour better.

2. Analytical derivation

2.1. The shear modulus and young’s modulus relation

The effective bulk (K) and shear (G) moduli of a porous
solid containing spheroidal shaped pores can be derived from
Mori–Tanaka approach as14

K = K0

1 + pf (ν0, α)/(1 − p)
(1)

G = G0

1 + ph(ν0, α)/(1 − p)
(2)

where K0, G0 and ν0 are bulk modulus, shear modulus and Pois-
son’s ratio of pore-free material, respectively and α is the aspect
ratio of the spheroidal pores and p is the porosity. f(ν0, α) and
h(ν0, α) are the functions of ν0, α and for simple explicit forms
of these functions reference may be made to the Appendix of
the reference14. Using the relation between K, G and Poisson’s
ratio, ν, for isotropic elastic solids7, i.e.

ν = 3K − 2G

6K + 2G
(3)

and Eqs. (1) and (2), expression for Poisson’s ratio of porous
solid is obtained as14

ν = 3ν0(1 − p) − pf (ν0, α)(1 − 2ν0) + ph(ν0, α)(1 + ν0)

3(1 − p) + pf (ν0, α)(1 − 2ν0) + 2ph(ν0, α)(1 + ν0)
(4)

For isotropic material E and G are related by the equation7

G = E

2(1 + ν)
(5)

which in terms of normalized moduli values can be written as

G

G0
= 1 + ν0

1 + ν

E

E0
(6)

Substitution of Eq. (4) in Eq. (6) and on simplification gives

G

G0
=

[
1 + ((1 − 2ν0)p/3)(f (ν0, α) − h(ν0, α))

1 + p(h(ν0, α) − 1)

]
E

E0
(7)

Substituting values of f(ν0, α) and h(ν0, α) in terms G,G0,
K, K0 and p from Eqs. (1) and (2) and using the relation
E = 9KG/(3K + G) from the theory of elasticity7, Eq. (7) reduces
to

G

G0
=

[
2

3
(1 + ν0) + 1 − 2ν0

3

E

E0
λ(K, G)

]
E

E0
(8)
where λ is a function of K0, G0, K, G and is given by

λ(K, G) = K0(3 + G/K)

K(3 + G0/K0)
(9)
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Fig. 2. A plot of λ(K,G) vs. E/E0 for Groups I, II and III specimens.

q. (9) shows that G/G0 can be expressed explicitly in terms of
/E0 if the function λ(K,G) can be expressed as a function E/E0.
nalytically λ(K,G) cannot be expressed as a function of E/E0.
o ascertain whether any relation at all exists between λ(K,G)
nd E/E0, we plotted λ(K,G) values against E/E0 for all the three
roups of data, which is shown in Fig. 2. Fig. 2 shows that
he function λ(K,G) can possibly be expressed as a hyperbolic
unction of E/E0. A non-linear regression analysis yielded the
elation λ(K,G) (E/E0)1.075 = 1 with a R-squared value of 0.994.
hus we assume the functional form of the relation between
(K,G) and E/E0 as

(K, G) = 1

(E/E0)n
(10)

here n is a constant for a given porous material.
Combining Eqs. (8) and (10) and simplifying gives

=
[

2

3
(1 + ν0)

E

E0
+ 1 − 2ν0

3

(
E

E0

)n0
]

G0 (11)

here n0 = 2 − n is a constant for a given porous material. Com-
arison of Eq. (7) with Eq. (11) indicates that parameter n0 is
ossibly related to the pore morphology of the material. Eq. (11)
hows that if the pore-free elastic moduli values (i.e. E0, G0 and
0) are known from the mean polycrystalline (VRH) values or
therwise, the value of n0 can be evaluated by knowing the E
nd G values at a single porosity value only.

.2. Porosity dependence of elastic moduli

The variation of elastic moduli with porosity is usually ana-
yzed in terms of a power law equation15 given by

= M0(1 − ap)nX (12)
here M stands for E or G; nx and a are constants, p is the porosity
nd X = E or G for Young’s and shear moduli, respectively. The
onstant ‘a’ is related to the critical porosity (pc) at which elastic
oduli vanishes, by the relation a = 1/pc. The value of pc can
ean Ceramic Society 29 (2009) 385–390 387

only be in the range 0 < pc ≤ 1, therefore minimum value of a is
1.

The right hand side of Eq. (12) contains two unknowns ‘a’
and nx and to determine the value of nx uniquely at least nx + 1
data point’s values must be known. Moreover values of E and
G calculated from Eq. (12) must satisfy Eq. (11). Therefore a
relation correlating M, nx, a and n0 is derived as follows:

dG

dE
= dG

dp

dp

dE
(13)

Evaluating the left hand hide from Eq. (11) and the right hand
side from Eq. (12) and substituting in Eq. (13) gives after
mathematical simplification

Γ = nG

(
G

G0

)((nG−1)/nG)

(14)

where

Γ=nE

(
2(1 + ν0)

3
+n0(1−2ν0)

3

(
E

E0

)n0−1) (
E

E0

)((nE−1)/nE)

(15)

Eq. (14) shows that a Ln–Ln plot of Γ versus G/G0 should give a
straight line and the value of nG can be obtained from the antilog-
arithm of the intercept on Ln (Γ ) axis. However, to evaluate Γ ,
nE and (nE + 1) number values of E with corresponding values
of G must be known. Thus the following procedure is adopted to
find the values of nE, nG and ‘a’ from Eqs. (11), (14) and (15).

First n0 is evaluated from Eq. (11) using experimentally mea-
sured E and G values at a single porosity. For the values of E0
and G0, either mean polycrystalline (VRH) values or experi-
mentally measured values are used. An initial estimate of nE is
made from Eq. (12) using the same experimental values as is
used in estimation of n0, taking the value of a = 1. A set of ten
E values including E0 are then generated by dividing Young’s
moduli values between E0 and zero in ten equal intervals and
the corresponding values of G are then calculated from Eq. (11)
using n0 value determined earlier. Using these values of E and
G and initial estimate of nE, a Ln–Ln plot of Γ versus G/G0 is
made and the linearity of the plot is checked through the value
of coefficient of regression (R-squared). The value of ‘a’ is then
incremented in steps of 0.001 giving a new estimate of nE and
Γ and a new value of R2 is calculated from the Ln–Ln plot.
The value of ‘a’ is taken as the value for which R2 becomes
maximum. nG is then calculated from the intercept. A minimum
value of 0.950 for the R2 is considered as the good fit. The esti-
mation is made on the basis of ten data points on the assumption
nE < nG ≤ 9. It may be mentioned here this data fitting can be
easily carried out on an Excel spread sheet in conjunction with
a scatter diagram.

3. Data analysis

The values of n0 for Groups I and II data sets were evaluated

from Eq. (11) using the reported1 experimental values of E and
G at highest porosities of 33.40% and 39.44%, corresponding to
Groups I and Group II, respectively. The calculations were based
on the VRH values K0 = 193 GPa and G0 = 97.2 GPa, obtained
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Table 1
Summary of the parameters of Eq. (12) calculated from the highest porosity data

System Parameters

a nE nG
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roup I 2.725 1.121 0.913
roup II 2.053 1.087 0.959

rom single-crystal elastic constants determined by Macedo et
l.16. Corresponding values of E0 and ν0 are 247.7 GPa and
.284, respectively. The values of n0 work out to be 0.322 and
.501 for Groups I and II data sets, respectively. Eq. (11) corre-
ponding to these values of n0 is shown in Fig. 1 by chain dotted
nd dotted lines for Groups I and II, respectively. In both cases
he agreement between Eq. (11) and experimentally measured
alues are extremely close with the maximum deviation being
.8% only. Group III data sets as shown in Fig. 1, closely follow
he equation developed for Group II. No separate value of n0 was
valuated for this group since no two specimens in this group
ad identical starting powder sizes.

Variation of the shear modulus and Young’s modulus with
orosity were evaluated using the procedure described above
sing experimental values of E at porosities of 33.40% and
9.44% and n0 values of 0.322 and 0.501 for Group I and Group
I specimens, respectively. The calculated values of a, nE and
G are given in Table 1. Eq. (12) corresponding to these values
long with the experimental data is shown in Fig. 3 showing
xcellent agreement between the two. Except for the value at
8.5% porosity for Group II specimens, all the values lie within
6% of the predicted values of moduli. As before, Group III

ata closely follow the equation given for Group II.
Fig. 4 shows the comparison of predicted values of the bulk

oduli with the experimentally measured ones plotted against
orosity. The predicted bulk moduli values with porosity were

btained by combining Eq. (11) with the well known relation7

= EG

3(3G − E)
(16)

ig. 3. Comparison of predicted shear moduli and Young’s moduli with the
xperimental data.

r
o
t
o

F

Fig. 4. Comparison of predicted bulk moduli with the experimental data.

nd Young’s modulus–porosity relation obtained from Eq. (12).
he closeness of experimental bulk moduli calculated from the
easured values of E and G to the predicted curves is remark-

ble, considering the sensitivity of these calculations to the
ropagation of experimental errors.

For a more rigorous test for the validity of Eq. (11) we com-
are the Poisson’s ratio values calculated from the measured
alues of E and G with those predicted form Eq. (11), Eq. (5)
nd the Young’s modulus–porosity relation obtained from Eq.
12). Fig. 5 shows the plot of the experimental and predicted ν

ersus porosity. The agreement between the predicted and the
xperimental values can be considered extremely good consid-
ring the fact that it is more prone to errors particularly at high
alues of porosity since it is calculated from the subtraction of
wo almost-equal terms.

Though the microstructures of the specimens were not
eported, but Spinner et al.1 had concluded that the higher rate

f decrease of moduli in case of Group I specimens compared to
hat of the Group II specimens was due to the larger deviations
f the pores of Group I specimens from sphericity compared to

ig. 5. Comparison of predicted Poisson’s ratio with the experimental data.
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ig. 6. Point-by-point calculation of optimum aspect ratio α fitting Mori–Tanaka
heory to experimental modulus data.

hat of Group II specimens. To ascertain the same, we calculated
he value of the apparent spheroid aspect ratio giving the best fit
o each experimental data point of all the specimens belonging
o Groups I, II and III, by simultaneously minimizing the error
etween the moduli values predicted from Eqs. (1) and (2) and
xperimentally determined shear and bulk moduli. The function
or error minimization is defined as follows:

Gexpt − Gtheory(α)

Gexpt

]2

+
[
Kexpt − Ktheory(α)

Kexpt

]2

(17)

here the subscripts expt and theory implies experimental and
redicted data points, respectively. Fig. 6 shows the variation of
he aspect ratio of all the group of specimens with porosity. The
lastic moduli values calculated corresponding to these aspect
atios are shown in Figs. 3 and 4 with a + symbol. In all cases it
hows excellent agreement with the experimental data.

. Discussions

The above analysis is based on the proposed relation between
he shear modulus and Young’s modulus given by Eq. (11)
hich, on comparison with Eq. (7) derived on the basis of
ori–Tanaka approach, indicates that n0 should not only depend

n porosity, but also on pore morphology. Fig. 5 shows that the
roups I and II specimens have different pore morphologies as

vident from different aspect ratio values and the respective val-
es of n0 = 0.322 and n0 = 0.501 for these groups also seem to
onfirm the above. On the other hand, if we calculate the indi-
idual n0 values for the four specimens of Group III which were
repared using 4–7 �m, 7–13 �m, 13–24 �m and 24–44 �m
owders—the values work out to be 0.696, 0.691, 0.711 and
.696, respectively. The specimens having powder size differ-
ng by an order of magnitude and pores of different aspect ratios
Fig. 5) yield identical values. It tends to indicate that the value

f n0 is independent of powder size and pore morphology and
ossibly dependent on some other material properties. Similar
esults are also obtained for alumina studied by Martin et al.17.
hey prepared three groups of specimens using powder sizes
pean Ceramic Society 29 (2009) 385–390 389

of 0.19 �m, 0.15 �m and 0.11 �m, respectively and measured
the ultrasonic velocities. From these velocities, the E and G val-
ues have been calculated and the corresponding values of n0
for three groups of specimens are evaluated as 0.843, 0.857 and
0.900, respectively which barely differ among themselves. Even
the values of G for Groups I and II specimens, estimated from
Eq. (11) using the values of n0 = 0.322 and n0 = 0.501, respec-
tively, differ among themselves by not more than 2.65% on an
average. Therefore, n0 value for these groups, for all practical
purposes, can be taken as the mean of the above two values, i.e.
n0 = 0.412 within the limits of experimental error. The solid line
shown in Fig. 1 corresponds to Eq. (11) with n0 = 0.412. Pre-
dicted values of G based on this mean value of n0 agree with the
experimental data with average deviations of 3.23% and 2.69%
for Groups I and II specimens, respectively. However, the value
of n0 = 0.412 is much lower than the average value 0.699 for
Group III specimens. A possible explanation for the same can
be given as follows.

Eq. (11) relates two of the elastic moduli of a porous struc-
ture, namely the shear modulus, G, which describes the strain
response of a body to shear stress or torsional stress, change
of shape without change of volume and Young’s Modulus, E,
describing the strain response to an uniaxial stress or bend-
ing stress. It involves both volume change and shape change.
Thus the relations between these two are expected be depen-
dent on the stiffness of the porous structure. This will depend
mainly on the particle morphology, average particle coordina-
tion number and the inter-particle contact geometry18,19. In this
context, the evolution of the effective elastic behaviour of the
powder compacts with the sintering history becomes important.
Based on sintering studies of ceramic powders reported by sev-
eral researchers18,19, two distinct stages of sintering are noticed.
In the first stage, sintering occurs by surface diffusion process
with reduction in surface area and growth in inter-particle neck
which leads to appreciable increase in the modulus values with-
out any appreciable change in porosity level. During this stage,
the relative moduli are function of average coordination number
and neck/particle radius ratio17,20,21. In the intermediate stage
of sintering, porosity is significantly reduced due to active bulk
transport mechanism and neck growth. Both the initial and inter-
mediate stages of sintering exhibit a characteristic linear relation
between the surface area reduction and ultrasonic longitudinal
wave velocity. Since specific surface area is directly related to
the inter-particle neck morphology and the ultrasonic velocity
is a function of the density and the elastic moduli19, it can be
inferred that the relative moduli will be a function of the neck
morphology in the intermediate stage also. Thus it is the change
in the neck morphology which determines the change in pore
morphology and not vice versa. Therefore, it is also likely that
the change in the neck morphology during sintering will be a
dominant factor in determining the value of n0. As the neck mor-
phology is controlled directly by the sintering characteristics of
the material, one may consider n0 to be a material-dependent

parameter.

For materials prepared without pore formers, the stiffness
of the structure will be directly dependent on the neck/particle
radius ratio. Thus Group III specimens which are free of pore
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former exhibit a nearly constant n0 indicating its dependence
on the sintering characteristics alone. Introduction of pore for-
mers will additionally weaken the structure which will not be
related to the neck growth alone. Therefore, the Groups I and II
specimens, in which the major percentages of pores have been
introduced with pore formers, show a lower value of n0. How-
ever, since their method of preparation is similar their n0 values
are very close to each other and the elastic behaviour of these
two groups can be represented by a mean n0 value.

Fig. 5 shows that the aspect ratio of pores of Group I
specimens deviate more from spherecity than that of Group
II specimens. This is in line with what Spinner et al.1 have
observed. However the rate of increase of aspect ratio with reduc-
tion in porosity for Group I specimens is faster than that of
Group II specimens. This is possibly due to the faster sintering
of smaller size powders in Group I specimens (0–2 �m) than that
of Group II specimens (2–4 �m) as has also been observed by
Martin et al.17 for zinc oxide and alumina powders in the early
stage of sintering. It may be further mentioned here that we have
calculated the aspect ratio of all the individual Groups I and II
specimens and estimated the moduli from the self-consistent
theory of Mori–Tanaka13 which agrees extremely well with the
measured values. However, our attempt to estimate the moduli
based on an “effective aspect ratio” as defined by Dean11, based
on this theory failed.

5. Conclusion

Elastic moduli versus porosity relation of polycrystalline
thoria has been reanalyzed in the light of the Mori–Tanaka
mean field approach. A relation between the shear modulus
and Young’s modulus of porous polycrystalline thoria has been
derived. It shows that for materials without artificial pore form-
ers, the variation of the shear modulus with Young’s modulus
is possibly dependent on its sintering characteristics rather than
pore morphology. Assuming a power law type dependence of
moduli on porosity, a new method has been suggested for
predicting variation of elastic moduli with porosity based on
experimental data at a single porosity only.
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